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A criterion of stability given by [l] for the linear systems of ordinary differential 

equations with variable coefficients, is extended to systems with lag. The exp- 

licit form of the quadratic functionals developed in p] for the systems of diffe- 
rential equations with lag is used. These functionals play a role analogous to 
that of the Liapunov quadratic forms for the systems of ordinary differential equ- 

ations. A criterion of stability of a nonlinear system of differential equations 
with lag is obtained in the manner analogous to that of [l]. 

Let the system 

dxldt = Ax (t) + Bx (t - T), z = const, z > 0 (1) 

where A and B are IL X n constant matrices and x (t) is an , n -dimensional vector be 
asymptotically stable, i.e., let the roots of the characteristic equation 

1 A - hE + Bexp (-a~) 1 = 0 (2) 

have negative real parts. Then by Theorem 5.1 of p], positive definite quadratic fun- 
ctionals V [S (S)] and W [s(6)] exist and Ti [z (S)j has the form 

1/ [x(o)] = (ax(0j.x (0)) + j (P (6)x (6J.x (O))@+ 
-7 

+ j? f (r (6, E) x (6).x (5)) d@dE, (3 
-7 --+ 

Herea = {zij), aij = ~jig P (6) = {Pij (6)), T (6, 4) = {Tii (6, F;)}, Tij (6,5) = Yji (E, O),(i. i = 
1, 2,. n), rij are constants, Pij (6) and Tij (6, 5) are continuously differentiable funct- 

ions and (x. y) is a scalar product of the vectors x and y. 
The total differentiable of the functional V [x (I?)] with respect to time satisfies, by 

virtue of the system (l), the condition 

dV Ixl (@)I I 
dt ,,,,=-W[x(S)], st@)=x(1 +a), -zc<60 (4 

where x1 (6) represents an element of the trajectory of the system (1). Let us define on 
the functional space of continuous functions 

x (6) = {“i (6)) (i = 1, 2, . . . ?1, --7 < C+ < 0) 

the norm 
1) s (6) /jr = sul’ (x (01.x (6))’ ’ (- T _, 6 Q 0) 

and consider the functionals V [x (S)] and W [x (I?)] on the hypersphere 
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II x (6) ll,2 = 1 (5) 

Limiting ourselves to the functions x (6) satisfying the Lipshitz conditions, i. e, , to the 
functions defined on the interval [--7, 01 for which a constant K exist for any 6’, 6” E 
[--z, O] such that 

I5i (* “) - Si (8’) I< K 1 6 ’ - 6’ 1 (i = 1,2, . . . n) 

we find that the set of functions x (6) satisfying the condition (5) will be compact, Con- 

sequently the functionals V [x (S)] and W [x (I?)] are bounded on this set and attain the 
saict lower and upper bound. Since the functionals V [x (S)] and W [x @I)] are positive 
definite, positive numbers I, II, L and L, exist, such that the following equalities hold 

on the functional hypersphere (5): 

inf V [x (S)] = I, sup I’[9 @)I = L (6) 
inf W Ix (S)] = 1,, supw [x(6)] = Ll 

As V [x (S)] and W [x (6)] are quadratic functionals, the following inequalities hold: 

~~~x(6)/l,~~~vx(~~]~~llx(~~ll,2 (7) 

2111 x (s&2 < w Ix PI I< -b I1 x (6) II2 

We can regard the set of functions x (6) as a set of initial functions for solving the sys- 
tems of differential equations with lag without any loss of generality, by virtue of the 
note appearing in [3] p. 158, This means that if for a given t,, the system is asymptoti- 

cally stable on the set of initial functions, for which the initial instant is defined by 
to -I- T and which satisfy the Lipshitz conditions, then the system is also asymptotically 
stable on a set of arbitrary, piecewise continuous curves x1, (6) (--‘G < 6 < 0) for which 
the initial instant is to. 

Consider the system 

fix/fit = (A + c (t)) x (t) + (B + B (t)) x (t - z) (8) 

where C (t) and D (t)are n X n matrices continuous in t. Let us find the derivative of 
the functional (3) with respect to time, using the system (8) 

dl’ 

dt (5) = - wx (WI + ((YC (l)+c* (Q 4 x (Q * x (0)) + (2rD (t) x (- r) *x 69) 4 
0 

-!- !’ (c* (t) p (6) x (6) *x (0)) d6 + p (n* (1) p (6) x (6)*x (-z)) 66 (9) 
, 

--t --i 

The inequalities (7) yield the following eqimate: 

Next we consider the bilinear functional 
0 

P (s (6), x (O))= \’ (p (6) x (tl)*x ((1)) d6 = (V (x (6))*S (0)) 

where p (6) is a continuously differentiable matrix, i. e. V (x (6)) is a linear operator. 
The following relation holds for the norm of a bilinear functional [4] of the given 
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type 
l/~ll=suPII~(~(fN. s ((4) II = II u II when II x (6) II,. II x (0) II < 1 (10) 

and in particular we have 

sup (xx ((1).x (0)) = I/ 2 II when 11 x (0) [/ < 1 

Relations (10) and (11) together yield 

II 2 II + II u II < L 

The inequalities (12) and (7) give the following estimate: 

(11) 

(12 

dV 

-x (8) 

Integrating this inequality we find that the following relation holds along the segment 
of the trajectory of (8): 

I 

vt%wl ~~r-[~,o@)lexP c (II C (4 II t II n (4 Ii) dsl (t - t4 
io 

Obviously, if 
f’ 

lim J-- ’ 
s 

111 
[_= t - h (II C (4 Ii + II 1) (4 II) ds < 27 

1” 
(13) 

then 
lim V [xt (S)] = 0 
l-rw 

and also 
lim x (t) = I! 
t+m 

Since the condition that the solutions of a linear system with lag tend to zero as i + 
.W represents the sufficient condition for the asymptotic stability [S], the following the- 
orem is true. 

Theorem 1. If the system (1) is asymptotically stable, then so is the system (8) 

provided that the matrices C (t) and D (t) satisfy the condition (13) in which I = infi’ 

[s (S)], L = supV [x (S)] and I, = infW [a (6)]on the hypersphere II x (6) 11: = 1 of the 
functions x (6) = (5i (6)} (i = 1,2, . ..n). satisfying the Lipshitz conditions, while 

V [x @)I and’W [r (S)] are quadratic functionals which represent the solution of the prob- 
lem of asymptotic stability of (1) and satisfy the condition (4). 

Clearly, when lag is absent, the theorem reduces to the corresponding theorem of 

[l]. The corresponding corollaries can be derived in a similar manner. 
Corollaries. If the system (1) is asymptotically stable, so is the system (8) prov- 

ided that any one of the following relations holds: 
CZ 

,I. \ (II c (4 ;I + II 1) (s) 11) ds < c < IQ 

‘(0 
2. 11 c (t) /I + 11 D(t) II< ‘/d1L-’ 

(14) 

3. lim (11 C (t) II + I/ II (1) 11) < 1/d~lL-2 
l--CC 

‘r. ,‘irn& (11 C (t) 11 + [I 1) (t) 11) := (1 
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Let us in addition consider the case of a nonlinear system 

dx/dt = (A + C (t)) x (t) + (B + D(t)) x (t - z) + R (x (t), x (t -z), t) (15) 

where R (x (t), x (t - t), t) is an n-dimensional vector continuous in all its arguments. 
Theorem 2. If the system (1) is asymptotically stable and the matrices C (t) and 

D (t) satisfy the condition (14), then a constant fi > 0 can be found, such that the tri- 

vial solution of (15) will be asymptotically stable for any value of the continuous vect- 
or R (r, s, t) satisfying the inequality 

II R (x. ~3 4 II d P (II x II + II Y II) (161 

Here Zi and L are given by (6). while IJ [x (6)J andW ,[x (b)]are quadratic functionals 
which solve the problem of asymptotic stability of (I), and are such that 

0 [Xf (WI 
dt I (1) 

= -zm’[x@)] (17) 

Proof. Let us compute a derivative with respect to time of the functional V [x (I?)] 

given by (3) and satisfying the condition (17), according to (15) 
dP 
dt (15) 

= - 211. [X(8)] + ((XC (t) + c* (t) a) x (0) -x (0)) + (2rD (1) x (-z) *x (0)) + 

‘r !’ (C*(t)p@)x(6).x(O))d6+ j? (D*(t)j3(6)x@).x(---))d6+ 
--T - 4 

+ (rR (x (O), x (- T), t) + R* (x (3 x (-z), t) a.x (0)) + 

+( ~P(e)x@)dfWx(O),x(-W)) 
Y 

-7 
Making use of the estimate 

(rR(x(O), x(-~),t)+R*(x(O),x(-r),t)a.x(O))< 

d 2 II a II . R @ $9, x (- ~194 II . II x (0) II f 4 II a II . P - II x (6) II2 
0 

(J p@)x@)d6.R(x(O),x(-r)t):‘g 
--r 

f 11 f P (6) x (6) do 11 . II R 6 (0) 7 x (- 6 0 II G ‘43 II u II * II x (f? IL” 
-T 

we obtain the following expression for the derivative of the functional: 
cl I’ 

x (Ir) < - 511’ [X (S)] + (1; (r (t) jj + fl D (1)jl)ZL !j 9 (0)/172 + 4~2 [[X (6) IL* 
1 

If the sum Ij C (t) 11 + II D (t) I/ satisfies the inequality (14) and the number fi > C satis- 
fies the condition fi < ‘i42&-‘, then the above derivative will be a negative definite 
functional, i. e. the functional c” [s (is)] will satisfy all conditions of the theorem on the 
asymptotic stability [3] along the trajectories of (15). Therefore the trivial solution of 
(15) is asymptotically stable, QED. 
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The problem of the mean square stability of a linear system which is under the 
action of a Markov chain is reduced to the investigation of the stability of the 
system for the second moments from the solutions of the original system. The sys- 
tem for the second moments possesses the property that its solutions, correspon- 
ding in a specific sense to positive initial data, are positive. This property per- 
mits us to apply to the investigation of the stability problem the very well dev- 
eloped theory of positive operators in a linear space with a cone. 

1. Equation, for Becond momentr, We consider a system of n linear diff- 

erential equations dx/dt = A (u) x (1.1) 

which is under the action of a homogeneous Markov chain {u (t), 0 < t < Y j with a fin- 
ite number of states [l, 21. The behavior of the Markov chain is described by the tran- 

sition probabilities pii (t) = P (t, ui. (uj}); here the matrix P (t) = (pij (t)} satisfies 

the equality P (t) = cot, where Q is an infinitesimal matrix with elements 

/it t-‘pij (f), 

l- 
j+i 

qij = 
lim t-l (pii (t) - I), j y i 
I--O 

We introduce the numbers qi = -qii (i -: 1, . . . . 1Y) and the matrices 11,; = A (I~I;) (k=: 
1 , . . . . :V). The Markov process generated by system (1.1) is denoted, as in p], by(z (0, 
2~ (t), 0 ,.; t < 3 ). The solution of system (1.1) corresponding to the initial data 
z (0) = 20, 1~ (0) = Q, is written in the form 5 (t; .r , ub). By the norm of a vector z we 

mean its Euclidean norm Ij 5 // = 1 .r I2 + . . -1 .rl12 

De fi ni t io n (see Cl]). The trivial solution of system (1.1) is said to be asymptoti- 
cally mean square stable if for any number F > o we can find a number 6 > 0 such 


